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1. Executive Overview
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Fibre 1-1. Subarray Module Figure 1-2. Broadside Pattern of Subarray Module

Ka-band MMIC _rays have long been considered as having high potential for increasing

the capab_ty of space, aircraft, and land mobile communication systems in terms of scan

performance, data rate, _ margin, and flexib_ty while offering a significant reduction in size,

weight, and power consumption. Insertion of _C technology into antenna systems,

particularly at millimeter wave frequencies using low power and low noise amplifiers in close

proximity to the radiating elements, offers a significant improvement in the array transmit

efficiency, receive system noise figure, and overall array reliability. Application of active array

technology also leads to the use of advanced beamforming techniques that can improve beam

agility, diversity, and adaptivity to complex signal environments.

Historically, phased array antenna architectures have been defined by the basic building blocks

used for the construction of the array. Two prevalent implementations of array architectures

include what are typically called the brick and the slat architectures. Both of these architecture

types are built with the MMIC and related support circuitry perpendicular to the radiating
structure.

The brick architecture typically uses microwave modules each with a single radiating element

backed by _C based circuitry which are inserted into a large structure to build the array

aperture. As each module acts as a transmitter (and/or receiver), each module must be connected

i i
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via beamforming networks along with a significant amount of DC/logic circuitry required to

supply and control the devices. This approach yields an array architecture that tends to be not

only highly labor intensive, but with a physically large aperture thickness and a very complex

mechanical structure. The slat approach uses vertical columns or horizontal rows of radiating

elements with each element backed by the same requisite MMIC based circuitry. However, due

to the collection of multiple radiating elements, transmit/receive functions, and a portion of the

beamforming networks on a single subassembly, slat architectures tend to exhibit a lower

mechanical complexity with fewer interconnections resulting in lower cost.

A third type of architecture now commonly referred to as the "tile" approach, has received

considerable interest in the recent past due to the promise of significantly reduced weight, array

profile, and cost. A tile array architecture is one in which the radiating element, MMIC devices,

signal distribution, and related control circuitry are placed in layers parallel to the radiating

structure. This construction permits a much higher level of subsystem integration such that a

multi-element subarray may be built complete with the all of the requisite radiating elements,

MMICs. DC/logic distribution, and signal distribution (beamformer) functions integrated into a

thin profile, lightweight subassembly (or subarray). Tile subarrays can easily be used as building

blocks for large array structures suitable for high performance applications. The compact size

promised by tile array architectures can enable application of the technology to low profile, light

weight antennae for aircraft and a variety of mobile platforms.

A secondary objective developed in the course of the program execution was to integrate two

of the subarray modules into a single 4 X 8 (32 radiating element) array for the purpose of

voice/data/video communications experiments via the Advanced Communications Technology

(ACTS) satellite. This 32 element array was designed to be self contained and operate both in

airborne and ground based mobile experiments. Figure 1-1 shows the front view of one of the 4

X 4 subarray modules delivered, while Figure 1-2 shows the measured boresight antenna pattern.

The program was intended to show the viability of designing and producing a limited quantity

of a highly integrated (file architecture) millimeter wave active phased array antennae. It was

understood from the initiation of the program that there were significant technical obstacles to

overcome to achieve the program objectives. Since the program was to use existing 1990 MMIC

designs, the primary risks were tied to the feasibility of integrating the MMICs and the requisite

control functions into an acceptable array architecture. To accomplish this task, a number of
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significant technical milestones were required focusing primarily on the novel interconnection and

packaging challenges. Major highlights of the technical achievements include the following;

• Development and successful demonstration of a true tile architecture for an active phased array

where the radiating elements, active bearnforming network, RF power amplification, and DC

bias/logic distribution functions are provided as an integrated layered system as opposed to
traditional brick or slat architecture

• Achievement of a low insertion loss MMIC phase shifter through the use of PIN diode switches

• Development of an Application Specific Integrated Circuit (ASIC) for logic control to reduce

the number of digital input/output ports required

• Development of a complex (9 layer) multi-layer thin film network board for DC bias and logic
distribution

• Development of a cavity backed aperture coupled patch radiating element

• Development of a orthogonal coax to microstrip feed

• Development of techniques for alignment of MMIC carrier plates with the radiating apertures

• Integration of individual RF channel on/off control within the subarray module

• Integration of reparability features into the subarray module

• Development of RF characterization and testability at a carrier plate subassembly level

• Demonstration of 77 watts EIRP for a single subarray module

• Development of a 29.6 GHz single input, dual output driver amplifier assembly with 27 dB gain

and 22 dBm output power for each output

• Integration of two subarray modules into a self contained flight worthy assembly with

integrated power supplies, fail-safe circuitry, and a demonstrated EIRP of over 300 Watts.

The successful integration of two of the subarray modules into a single antenna array is

considered the most significant accomplishment from the MMIC array viability point of view.

This 32 element array demonstrates a transmit EIRP of over 300 watts fielding an effective

directive power gain in excess of 55 dB. (i.e., the 32 element array package requires less than -3

dBm CW power input to achieve the EIRP of 300 Watts (54.7 dBm) at 29.63 GHz. The main

significance of this array is that it has been actively used as the transmit link in airborne/terrestrial

mobile communication experiments accomplished via the ACTS satellite launched in August

1993. This use represents a viable demonstration of the tile technology insertion into a test

vehicle usable outside of the laboratory. Success of the communication experiments has provided

a strong measure of credibility regarding the potential of insertion of millimeter wave MMIC

technology into compact, high reliability antenna systems for mobile satellite communication

applications.
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2. Subarray Module Requirements

The major objective of the Ka-Mist program was to advance array packaging technology that

resulted in the demonstration of a light weight, low cost, compact, EHF phased array antenna.

This led to the development of specific performance goals for the demonstration of the technology
which are shown in Table 2-1.

Table 2-1. Specific Requirements for the 4 X 4 Subarray Module

Parameter Value

Center Frequency 29.63 GHz

Array Type Transmit

Array Geometry

Number of elements

Number of Beams

4 X 4 rectangular grid
16

1

Radiating element Aperture coupled patch element

Element gain 5 dB

Subarray bandwidth 5%

Scan requirements _ 30 o

Grating lobes None in visible space for broadside beam

RF drive power 125 mW

RF transmit power 1.5 W

EIRP 75W

Polarization

Pointing accuracy

RF amplifier type

RF phase shifter type

DC power supply

Thermal management

Vertical

1/4 of a beamwidth

GaAs MMIC

GaAs MMIC

Regulated, Vcc,Vdrain,Voate.Vohase(+_,Vohas e (.)

Circulated chilled water, cold plate

Power up sequence Manual (adjust individual voltages)

External controller 486 PC with serial data output

Operating environment Laboratory

The subarray module requirements shown in Table 2-1 were determined to a large extent by

the essential need to use existing MMIC designs to allow the program to focus on the packaging

technology rather than MMIC development. The existing MMIC device performance levels and

mechanical dimensions heavily influenced the development of the subarray level requirements
shown in Table 2-1.

Development of the requirements generated a number of key subarray module attributes that

influenced the final configuration including;

• Wider than optimum interelement spacing due to the physical size of the MMIC die. The die

size drove the subarray layout in that it was considered critical to make certain that the
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DC/logic distribution layer would not cover the radiating structure or the MMICs. This

alleviated the concern than back radiation from the MMIC to element coupling would cause

interference within the subarray module.

• Integration of the DC/logic functions within the subarray module to simplify the external

interface requirements. The need to integrate this level of functionality led to the development

of a custom ASIC and a highly sophisticated multi-layer DC/logic distribution thin film network

to allow the input/output terminals to be reduced to a single serial data input for each half of the

subarray and terminals for the various supply voltages. The end result was a subarray package

with only sixteen DC/logic terminal pins.

• Testability of individual carrier plates external to the subarray module to ensure functionality

and optimum power matching prior to module assembly. This attribute led to the use of

conventional MMIC and wire interconnect technology for both the carrier plates and the final
subarray module assembly.

• Good thermal control of the subarray module to ensure reliable operation of the MMICS.

This was of particular concern as the major heat producers (power amplifiers) were placed

adjacent to the radiating structure which was physically removed from the available cooling
surfaces.

These and other related issues were addressed in the design/validation phase of the program.
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3. Subarray Module System Description

The subarray module block diagram is shown in Figure 3-1. Key subsystems of the module

include the radiating aperture, RF distribution network, DC power/logic distribution, and thermal

management. RF power is supplied via a single K-series coaxial connector and is transmitted

through an uniform microstrip sixteen way power division using one two way power divider

(which is an integral part of the orthogonal feed) and two eight way power divider networks.

Each of the sixteen RF lines feeds a single 4 bit MMIC P-I-N diode switched line length phase

shifter and a single three stage P-HEMT power amplifier. The output of the power amplifier is

coupled via a slot feed to the radiating elements which are cavity backed patch elements.

KEY SUBSYSTEMS

• RF

• CONTROL

• THERMAL

DRAIN BIAS

DRAIN BIAS

Figure 3-1. Subarray Module Block Diagram

I

I
I
I
i
I
I
I
I

I

I
I
I

.J

Logic commands for selection of individual phase bits and enable/disable of the individual

power amplifiers are routed through a serial data bus to an ASIC which converts the serial data to

parallel data prior to transmission to the individual control elements via a multi-layer thin film

network PWB. The data bus provides individual control over each phase shift bit by element in

addition to the capability to enable or disable each of the sixteen amplifiers through control of the

DC drain bias voltage. DC power (five discrete voltages) is supplied via individual through wall
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contact pins and is routed via the same mulfilayer TFN to provide amplifier gate bias, amplifier

drain bias, ASIC power, and phase shift bit control.

Control of the subarray module is provided by a 486 class PC acting as a beam steering

controller. The 486 PC uses a specially designed interface card controlled by an array control

program written in Basic. For a desired beam pointing angle (azimuth/phi) the control software

uses a calibration lookup table created during range testing of the subarray to calculate the

optimum phase shifter bit settings. Once the bit settings are determined, the interface board

clocks in the serial data using one cycle for each subarray half (i.e. it requires two clock cycle to

update all 16 phase shifters. The array controller PC provides a visual display that mimics the

location of each phase shifter/amplifier pair with a indicator showing the phase bit selected and the

enable/disable status of each amplifier. The control software is designed to allow manual control

of each phase shifter/amplifier pair as well as full beam steering control. This feature of the array

controller is particularly useful in the generation of array calibration files as it allows each element

to be activated and controlled individually.

Thermal management for the subarray module is provided by a cold plate chilled by circulated

water mounted to the side opposite the radiating elements.

The power dissipation of the subarray module is approximately 10 Watts which for

bench/antenna range testing was easily handled by maintaining the water flow through the chiller

at approximately 18°C.

Fi_e 3-2. Subarray Module Layout

POWER AMPLIFIER

CARRIER PLATE

PHASE SHIFTER

AMPLIFIER DRAIN
BIAS SWITCH

COAXIAL RF INPUT

THIN-FILM NETWORK

MICROSTRIP FEED TO
PATCH ELEMENT

DC/LOGIC
DISTRIBUTION BOARD

DC/LOGIC PINS

RF FEED NETWORK UNDER
THIS FEATURE
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Figure 3-2 shows the actual layout (photograph) of the subarray. The physical architecture of

the subarray module is arranged such that each half of the subarray is identical and contains; eight

radiating elements, four carrier plates, one ASIC, one thin film network DC/logic distribution

board subassembly, and one eight way power divider. Each pair of radiating elements is fed by a

single carrier plate which carries two amplifiers, two phase shifters, and thin film networks for

feeding the amplifier/phase sNfter circuit (RF and DC/control) as well as providing the slot for

coupling the output of the amplifier to the patch radiator. The output of the amplifier is fed to a

microstrip TFN which couples the RF to the patch antenna through a slot etched on the ground

plane side of the microstrip line. A cylindrical hole in the carrier plate is part of the cavity which

backs the patch radiator while gold plated quartz used for the actual radiating element. The phase

shifters are 4-bit switched line length with an average insertion loss of 4.5 dB while the amplifiers

are three stage P-HEMT devices with approximately 20 dB of gain and an output power of

approximately 100 mW. The DC/logic distribution board subassembly includes an ASIC, drain

bias switches, gate bias voltage regulators, and filtering components. This board provides

regulated power to the ampler gate and drain lines, and provides serial to parallel data

conversion (via the ASIC) for individual control of the ampler and phase shifters. The RF feed

network which lies underneath the DC/logic distribution board, provides a uniform power

distribution from the orthogonal launch and has an insertion loss of approximately 5 dB. To

overcome the power distribution losses to supply proper drive to the MMIC power amplifiers

requires an input power at the K connector of approximately 125 mW.

Figure 3-3 shows the front side of the aperture which consists of 16 radiating elements

arranged in a 4 x 4 planar configuration. The radiating elements are arranged in a square grid,

with an inter-element spacing of 0.33" (= .8 %). Any further reduction in the inter-element

spacing was constrained by the existing MMIC chip sizes and hybrid packaging scheme used for

the module construction. The actual subarray module aperture size is 1.33" x 1.33".

Figure 3-3. Subarray Module Aperture
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4. Subarray Module Components

Critical components of the subarray module include the radiating element, RF manifold,

MMIC phase shifters, MMIC power amplifiers, carrier plate subassemblies, and the DC/logic

distribution board subassembly. A brief discussion of each of the components follows.

4.1 Radiating Element

The radiating element used for the subarray module is an electromagneticaUy coupled patch

antenna. This antenna provides a wireless connection from the power amplifier to the radiating

element. The patch elements are embedded in dielectrically loaded and hermetically sealed

cavities formed in the base of the module housing. A comparison between desired and achieved

performance of the radiating element in an isolated environment is given in Table 4-1.

Table 4.1. Radiating Element Isolated Performance

Parameter Performance Goal Measured Value

Center Frequency 29.6 GHz 29.6 GHz

Bandwidth 5 % 8%

3 dB beamwidth < 30 degrees < 30 degrees

Front-to Back ratio 15 dB 13 dB

Element gain 4 dB 6 dB

Cross polarization < -15 dB < -20 dB

The patch element was chosen over dipole and waveguide elements since these elements lend

themselves to low profile construction and can be easily integrated with the MMICs. Given the

patch element as the preferred candidate, the primary design trade offs existed in the construction

techniques and the method of coupling the power amplifier to the patch.

Patch elements are commonly constructed on a continuous dielectric substrate using a simple

photolithographic etching process. Unfortunately, the dielectric substrates commonly available

are poor conductors of the heat generated by the power amplifiers particularly when the amplifiers

are mounted on the ground plane side of the patch elements. Use of a continuous dielectric

substrate also leads to generation of undesirable surface waves for thick substrates. To eliminate

these problems, a dielectrically loaded cavity structure was selected for the radiating element.

The radiating element consists of z-axis quartz dielectric with a circular patch printed on the top

of the dielectric substrate. The sides of the quartz are also gold plated to allow hermetic sealing

of the elements to the housing. RF is coupled from the microstrip feed via a .004 thick slot in the

backside of the carrier plate feed TFN. With this configuration, the resonant frequency is

essentially determined by the size of the patch and the substrate dielectric constant. Figure 4-1

shows the construction of the radiating element.
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Figure 4-1. Radiating Element Conslruction

The specific radiating element design was arrived at through empirical and analysis tasks. The

starting point of the element design was based on the computer analysis tools available for patch

elements on continuous dielectric substrates. This analysis provided the patch size for given

dielectric substrate thickness and its dielectric constant. The cavity diameter was selected through

experimental iteration. The cavity diameter was selected such that the effect on the resonant

frequency with and without cavity was minimum. Figure 4-2 shows the measured VSWR of an

isolated radiating element. The result shows better than 8 percent bandwidth for 2:1 VSWR.

Figure 4-3 shows the measured gain over the operating frequency band. As seen from the

figure, a 6 dB gain was achieved with an isolated element.

Figure 4-4 shows the isolated element E-and H-plane patterns. As seen from these figures,

the front-to-back lobe ratio is about 13 dB. The minimization of the back radiation effects on

subarray stability led to important design considerations in the module packaging and shielding.

The effect of mutual coupling on the element scan performance was an important area of

concern particularly due to the fact that the inter-element spacing was about 0.8 wavelength. To

address this concern, a passive 4 x 4 element array was fabricated and measured to determine the

mutual coupling between elements. From the mutual coupling data, the reflection coefficient was

computed as a function of a scan angle and plotted against infinite and finite array cases where the

patch elements are mounted on a continuous dielectric sheet of uniform thickness and dielectric

constant. For the case of a finite 4 x 4 array with cavity backed elements, the results show a well

behaved VSWR performance over scan volume. The three cases are plotted in Figure 4-5
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Table 4-2 shows the mechanical dimensions for the final element configuration.

Table 4-2. Radiating Element Mechanical Dimensions

Parameter

Antenna Element Dielectric Constant

Value

4.6

Patch Diameter 0.089 Inches

Cavity Diameter 0.120 Inches

Cavity Depth 0.030 Inches

Feed Substrate Thickness 0.010 Inches

Feed Substrate Dielectric Constant 9.8

Slot Length 0.071 Inches

Slot Width 0.004 Inches

Feed Line width 0.010 Inches

Stub Length 0.020 Inches

4.2 RF Manifold

The primary requirement for the RF manifold is to provide a uniform sixteen (16) way power

split for efficient distribution of the subarray module RF drive power. The centerpiece of the

manifold is an orthogonal coax to stripline launch which provides an equal power split between

the subarray module halves followed by a transition to microstrip. The orthogonal launch consists

of a K connector attached to a multilayer duriod laminate which includes a mode suppresser,

matching tees, and a quarter wave transition fxom stripline to microstrip. Figure 4-6 shows a

cross sectional view of the launch while Figure 4-7 shows details of the mode suppresser,

matching stubs and stripline to microstrip transition.
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The manifolding is symmetrical for each half of the subarray module and consists of a single

two way power divider and a pair of four way power divider microstrip thin film networks

fabricated on .010 alumina substrate. Reactive tees are used on the four way dividers to prevent

interline coupling and to provide improved input match and amplitude tracking. Return loss of

the RF manifold is better than 20 dB with an insertion loss of approximately 5 dB at 30 GHz.

Figure 4-8 shows a view of the subarray module with the DC/logic distribution boards removed to

uncover the RF distribution manifold.

COAXIAL
FEED

4 WAY

STRIPLINE TO
MICROSTRIP

2 TWO WAY

Figure 4-8. Subarray Module RF Manifold

4.3 MMIC Phase Shifter

The MMIC phase shifter used in the subarray module (shown in Figure 4-9) is a four bit

switched line length design that utilizes P-I-N diodes as switch elements. It was designed and

fabricated by Texas Instruments Central Research Laboratories (CRL) and is based on a

broadband (20 to 40 GHz) design originally developed for the Am_y LABCOM. The design

iteration for this program optimized performance over a narrower frequency range, restructured

the P-I-N diode orientation to simplify logic control and added coplanar probe pads to facilitate

on wafer characterization. The MMIC measures 0.122 x 0.058 x .004 inches, requires one bias

input per bit, and includes a DC block. The MMIC exhibits extremely low insertion loss for a

MMIC operating at this frequency.

i
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Figure 4-9. Phase shifter MMIC

Phase states on the MMIC are selected by applying a positive or negative bias voltage to the

input pad of each phase bit. This forward biases the diodes in the reference or delay path and

reverse biases the diodes in the opposite path. This configuration was defined in concurrence

with the output state of the controller ASIC (which switches between these voltages and

sources/sinks the diode bias currents) to allow the ASIC to directly control the phase shifter

diodes without any additional drive circuitry. Phase shifter performance requirements and

measured data are shown in Table 4-3.

Table 4-3. MMIC Phase Shifter Performance

Parameter Specified Measured

Phase Accuracy + 10 % of bit size + 12 % of bit size

Insertion Loss < 8 dB < 6 dB

Loss Variation Vs state < + 1 dB < + 1 dB

Part to Part Loss variation < +_1 dB < + 1.5 dB

Input VSWR < 2:1 < 2:1

Output VSWR < 2:1 < 2:1

Bias Current < 10 mA per bit < 10 mA per bit

Figure 4-10 shows sample RF probe data for 6 phase shifters at a single reference state only,

Figure 4-11 shows RF probe data for a single phase shifter at different phase states, and

Figure 4-12 shows phase accuracy of a single phase shifter at different phase states. Examination

of the MMIC phase shifter data shows the achievement of very good performance for an EHF
device.
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Figure 4-10. Phase Shifter MMIC to MMIC Loss Variation
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Figure 4-11. Phase Shifter MMIC Loss Variation with Phase State
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Figure 4-12. Phase Shifter MMIC Phase Shift Accuracy

4.4 MMIC Power Amplifier

The MMIC power amplifier used in the subarray module is a three stage design utilizing

P-HEMT devices. It is based on a MMIC developed on a previous NASA program and was

designed and fabricated by CRL. For this application, the interstage matching networks were

modified to center the operating band to approximately 30 GHz with the addition of coplanar

probe pads to facilitate on wafer probing and screening. The MMIC die size measures 0.094 x

0.041 x 0.004 inches. Bias requirements consist of a positive drain voltage (typically 4.5 V), and

a negative gate voltage (typically -0.3 V). Drain current is typically 80 to 100 mA when biased

for maximum power output. Power added efficiency for the amplifiers is approximately 22

percent. Table 4-4 shows typical performance for a single MMIC power amplifier. Figure 4-13

shows the amplifier used in the delivered subarrays while Figure 4-14 shows a representative

power output curve for the amplifier.

Table 4-4. MMIC Power Amplifier Performance

Parameter Specified Measured

Output power > 100 mW > 100 mW

-1 dB bandwidth + 700 MHz + 800 MHz

Associated gain >15 dB >20 dB

Efficiency > 20 % > 22 %

Input VSWR < 2:1 < 2:1

Output VSWR < 2:1 < 2:1
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Figure 4-13. 3 stage P-HEMT MMIC Power Amplifier
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Figure 4-14. MMIC Power Amplifier Power Output

4.4.1 Power Amplifier Reliability

For MMIC arrays to yield the maximum potential in terms of graceful degradation, the

reliability of the components is of critical importance. Considering that the power amplifier is

typically the component with the highest stress due to power dissipation and thermal stress,

reliability of the power amplifier is considered the key to the long term reliability of MMIC phased

arrays.

i
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As indicated previously, the power amplifiers developed for this program were a variation of

an existing design based on an available (1990) process technology. Due to the limited number of

devices required to populate the needed subarrays, only a single set of wafers were originally

processed for the program. As they were processed in a single lot, all of the devices bore the

same performance characteristics. Considerable testing of individual amplifiers was accomplished

both in standard test blocks and in carrier plate test formats that yielded a good indication of the

performance parameters of the original amplifier lot.

During antenna range testing of the first subarray module assembled, unanticipated failures of

several power amplifiers occurred. Failure analysis via visual inspection (scanning electron

microscope) showed several cases of failure of the third FET (output stage) indicative of

overcurrent stress on the device. Continuing failure analysis and testing of individual amplifiers

outside the subarray environment led to the conclusion that the amplifiers were marginally stable

and exhibited a tendency towards natural oscillation in the 30 to 500 MHz range under various

bias conditions. In addition to the natural instability, the original process lot of amplifiers

exhibited a drain breakdown voltage of approximately 7-9 VDC. The failure analysis led to the

conclusion that the failures in the subarray environment were the result of the instability of the

individual devices, limited isolation of the drain voltage bus in the subarray, and the low

breakdown voltage of the devices.

Due to low process yield of the original lot of amplifiers, a second lot was processed and

became available during the failure analysis. The second lot showed the same instability tendency

but exhibited considerably improved breakdown resistance (12-15 volts). In the array

environment, the instability problem and the drain bias isolation was resolved by the addition of a

5 ohm decoupling resistor and a 470 _tF capacitor on the drain and gate bias lines for each

amplifier (placement of the decoupling resistor can be seen in Figure 4-15). Use of the new

process lot amplifiers and the additional filteringcircuits successfully resolved the instability and

failure problem. It is important to note that as of the writing of this report, the 32 element array

built using two subarrays has accumulated an estimated 400-500 operational hours in fairly harsh

environments including airborne and ground mobile Satellite On The Move experiments without a

known amplifier failure.

4.5 Carrier Plate

As originally proposed, the selected approach for mounting/carriage of the amplifier and phase

shifter MMIC's was the use of a carrier plate. Each carrier plate provides two transmit channels

and includes: two four bit phase shifter MMICs, two power amplifier MMICs, two microstrip

feed lines for coupling to the antenna elements, RF interconnect lines, and the appropriate DC

bias/filtering provisions. As envisioned, this approach allowed the RF testing and characterization

of the RF performance prior to installation into the subarray module. In a number of cases, this

test capability allowed identification and resolution of defects prior to installation and, provided a

means of selecting carrier plates with closely matched power output profiles. Figure 4-15 shows

the front and back sides of a single carrier plate.
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Figure 4-15. Carrier Plate

For the base carrier plate, _RMKON 65M, which is a copper molybdenum alloy, was

chosen as the preferred material due to good thermal conductivity and a coefficient of thermal

expansion (CTE) value in line with that of the GaAs MMICs and the Alumina used for the thin

film networks. The base itself was machined using conventional techniques and tolerances and

gold plated to improve adhesion of the bonding epoxies used and to provide a satisfactory RF

ground.

Distribution of the RF, DC bias and provision for proper RF and DC isolation required the use

of four thin film networks (TFN) fabricated on .010 thick alumina substrate. Of the four, two

were single layer TFN's that provided a matched RF input line from the (subarray) RF distribution

network and the RF interface from the phase shifter MMIC and the Amplifier MMIC. The

remaining two TFN's were multi-layer (6 layers) TFN's that contained on the various layers the

radiating slot, a microstrip feed line for the slot, DC bias lines with bias resistors for phase shifter

control, DC bias lines for the amplifier MMIC's, and mounting pads for gate/drain isolation

capacitors. In addition, the last version of the multi-layer TFN's contained a decoupling resistor in

the MMIC amplifier DC bias line.

In light of the functions provided by the carrier plate assembly, proper alignment of the TFNs

and MMICs were highly critical factors affecting the RF performance of the individual radiating

elements. Alignment of the radiating slot relative to the feedthrough in the carrier plate and

relative to the patch element in the subarray housing was of critical importance to prevent

significant mismatch and back radiation. Actual assembly of the carrier plates into the subarray
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module is done manually using registration marks on the individual carrier plates and geometric

references marked on the inside walls of the subarray housing.

Testing of the carrier plates was accomplished by the use of specialized fixtures an example of

which are shown in Figure 4-16.

Figure 4-16. Carrier Plate Installed In Test Fixture

In the test fixture, RF is fed _ough a K-connector microstrip launch onto a microstrip circuit

feeding the carrier plate. _e ampler ou_ut microstrip is positioned over a patch array which

radiates into a absorber _ed box conta_g a s_ horn antenna for sensing the output. The

output of the horn is fed to a scalar network analyzer which allows comparative power output

measurements. This measurement capability was used primarily to verify functionality of each

carrier plate prior to subarray installation and to provide a comparative measure of compression

behavior, operating bandwidth and power output to allow best matching of carrier plates for a

single subarray.

An example of the scalar display for various levels of RF drive power for a single amplifier on

a carrier plate is shown in Figure 4-17.

i i
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Figure 4-17. Carrier Plate Power Compression

4.6 DC/Logic Distribution & Control

Control of the subarray module and the distribution of the DC and logic commands is

provided by a pair (one for each subarray half) of multi-layer thin film network PWBs (TFN-

PWB). The TFN-PWB consists of a total of nine distinct layers alternating between polyimide

insulators and metallic conductors. The multilayering approach was driven primarily by the

number of logic and DC lines that were required to provide power and control logic to the

individual radiating channels. Each TFN-PWB is populated with an ASIC, voltage regulator for

the amplifier gate voltage, silicone IC switches (4) for enable/disable of the amplifier drain

voltage, chain resistors for individual adjustment of gate voltage, and filtering capacitors. The

ASIC provides the function of converting the serial logic provided by the controller to the parallel

logic required by the subarray module. The ASIC is a serial to paraUel latched shift register with

TTL outputs to the drain switch IC's and bipolar outputs to the phase shifters. Serial data

consisted of a clock, update strobe, and, amplifier control, phase shifter enable, and phase shifter

bit set logic words. Figure 4-18 shows the layout of the multilayer board and Figure 4-19 shows

the block diagram of the ASIC control circuit.
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Figure 4-19. DC/Logic Distribution Block Diagram
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5. SUBARRAY MODULE ASSEMBLY

Physical assembly of the subarray module in most cases utilized standard Texas Instruments

microwave assembly techniques such as glass to metal sealing, furnace soldering, laser

welding/trimming, MMIC, ASIC die bonding, component (capacitors, resistors, IC) bonding,

wirebonding, and chisel bonding. However, due to the high level of integration, close tolerancing,

and limited real estate in the subarray module, the processes used in most cases, pushed the

threshold of processing capability.

The assembly process consists of a number of critical steps for installation, alignment, and

testing of the various subsystems used the subarray module. The basic assembly process is

described in the following. The process is described with all of the subassemblies (carrier plates,

thin f'flm networks, etc.) completed and with functional testing completed.

Install radiating elements. DC/logic input pins are installed with glass feed throughs and

fired in a standard glass to metal seal furnace process. Cylindrical Sn96 solder preforms are

installed into the housing diameters machined for the radiating elements and sized using a

precision diameter pin. Radiating elements are then inserted into the housing diameter and held in

place with an additional solder preform wrap. The housing subassembly is then fired in a vacuum

solder reflow furnace with a specialized tool used to prevent significant movement of the radiating

element during the liquid phase of the solder. Hermiticity tests are conducted to ensure proper

flow of solder during the operation.

Install RF input assembly. The RF input subassembly is first bonded to the inside floor of

the subarray module housing holding the position of the two RF microstrip output lines to within

.002 of a registration feature on the housing. The upper portion of the K connector housing is

then laser welded to the inside wall separating the two halves of the subarray module housing.

The dielectric pin assembly for the connector is then inserted followed again by a laser welding
operation to fasten the connector threads.

Install RF distribution carrier plate. The RF distribution carder plate is a machined

KOVAR piece bonded with conductive epoxy to the inside floor of the subarray module housing

and serves as the carrier for the two way and four way power dividers and as a mounting pad for

the DC/logic distribution TFN. The carder plate is also used to match the height of the RF

distribution network to the center RF feed and the RF transition to the MMIC carder plates.

Location of the distribution carder plate is held to within .0015 ".

Install RF distribution thin films. Two way and four way power dividers are bonded to the

surface of the RF distribution carder plate maintaining alignment of +.0015 between the RF input

assembly and thin film microstrip lines.

Install MMIC carrier plates. MMIC carrier plates are bonded to the floor of the subarray

module housing. Alignment of the radiating slot on the underside of the carder plate feed thin

films and the radiating elements is achieved through the use of a registration process. An

intentional feature on the carrier plates which was used to correctly assemble the MMIC and thin

films, is used to properly locate the carder plate in the subarray module housing. Alignment of

the microstrip feed lines from the RF distribution must simultaneously be maintained within +.002
to minimize mismatch losses.
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Alignment of RF interconnects. Steps 3, 4, and 5 are done simultaneously to ensure the

best alignment possible of the RF interconnects. The individual subassemblies are installed using

conductive epoxy and properly aligned relative to the feed and the radiating elements prior to cure

of the epoxy.

Install DC/Logie distribution board. The DC/Logic distribution board is conductivly

bonded to the pads on the RF distribution carder plate.

Test. Functional testing of the subarray module is performed at this stage and includes

measurement of individual RF channel performance, power consumption, and MMIC bias

conditions. Individual control of each RF channel (on/off, phase bit control) enabled the

functional testing of the subarray module in a bench test environment. Active range testing of the

subarray module follows functional bench testing.

5.1 Subarray Module Performance

Each of the three subarray modules delivered for this program were characterized using a

millimeter wave indoor rectangular antenna range at Texas Instruments facilities in McKinney,

Texas. For the test, an individual subarray module is mounted flush with an 18 x 1 inch ground

plane with the outer 10 inches on all sides covered with absorbing material. RF drive power of

approximately 125 mW is supplied to the subarray input connector. DC power and control logic

is provided using discrete power supplies and the 486 class PC used as the array controller

connected to the subarray via a single cable. Cooling of the subarray in the range is provided by

chilled water circulated through a cold plate mounted to the backside of the subarray module.

Figure 5-1 shows a single subarray mounted on the positioner mast in the antenna range.

To generate the calibration files required for the array controller, an automated data collection

sequence was established in the Antenna Test Range. An HP-IB type data interface card was

installed in the array controller PC and connected to the range receiver. A short control program

was written to automatically command the array controller to enable a single amplifier, cycle

through all 16 phase states, read the phase and amplitude measured by the range receiver, and

store the phase data in a calibration file. This process was repeated for each element and used to

build a calibration map file for the operation of the full subarray module. Amplitude data was also

stored but is not used by the array calibration f'fie.
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_gure 5-1. Subarray Module in Antenna Range Fixture

Using the data collection program, insertion phase and amplitude measurements were

recorded for each element and phase state. The phase data is inserted into a calibration file used

by the subarray controller to calculate proper phase s_te setting for steering the beam. Amplitude

measurements are not used in the subarray control but were used to examine the performance of

the power amplification in the subarray environment. Figure 5-2 shows an example amplitude

map where relative power measured at the range receiver is plotted versus phase state. As can be

seen in the amplitude map, the power output of individual elements is insensitive to phase state.

Power output variation between elements ranges from approximately 3-4 dB.
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Figure 5-2. Amplitude Map of Subarray

Figure 5-3 shows the measured scanned beam patterns in the H and E planes. As shown in

the figure, the gain rolloff as a function of scan angle is less than 3 dB over a 30 degree scan

angle. Measured EIRP of the best performing subarray module was 77 watts (1.6 watts total RF

power) with a power consumption of approximately 10 watts yielding a DC to RF efficiency of

approximately 16 percent for the entire subarray.

Comparison of the measured data against the established requirements noted in Table 2-1

shows the performance of the subarray module met all the goals and requirements of the program.
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6. 32 Element Array System Description

With the original program objectives having been achieved with the antenna range

demonstration of a single subarray module, the next objective was to integrate two of the

subarrays into a single 4 x 8 (32 element) array capable of being used in a controlled flight

environment. This objective was critical as it provided the opportunity for the subarray modules

to be used in non laboratory environment. As this represented a practical use of what essentially

was a laboratory based concept validation program, a new set of requirements were generated

reflecting the added packaging complexity of providing RF drive, DC power, associated

regulation, logic distribution, logic control, thermal management, and the appropriate interfaces.

Table 6-1 shows the specifications generated for the 32 Element Array.

Table 6-1. Specific Requirements for the 32 Element Array Assembly

Center Frequency 29.63 GHz

Array Type Transmit

Array Geometry 4 X 8 rectangular grid

Number of elements 32

Number of Beams 1

Radiating element

Element gain

Subarray bandwidth

Scan requirements

Grating lobes

Transmit RF power

Input RF power

EIRP

Polarization

Pointing accuracy

Thermal management

DC power input

Power up sequence

External controller

Interface

Operating environment

Aperture coupled patch element

5 dB

5%

+30 °

None in visible space for broadside beam

3.0W

1 mW Maximum, (.3 mW minimum)

200 W Minimum

Vertical

1/4 of a beamwidth

Thermoelectric, forced air cooling

28 VDC unregulated, single input

Automatic timing

486 PC with serial data output

Standard RF, aircraft type connectors

Controlled flight pressurized to 8,000 ft
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Figure 6-1. Block diagram of the 32 Element Array Assembly

A block diagram of the array assembly equipment package is shown in Figure 6-1 with the

basic mechanical layout shown in Figure 6-2. The basic equipment consists of the array assembly,

junction box, controller, and interface cabling. The array assembly contains an RF driver

amplifier/power splitter assembly, DC power conversion and regulation for the subarray module

bias voltages, distribution circuits for the serial logic control signals, timing circuit for automatic

sequential application of bias/supply voltages, thermoelectric cooling devices, cooling fan, and

two subarray modules. The array assembly is shown in Figure 6-3 and Figure 6-4. As discussed

in the array thermal analysis, the physical size of the array was driven by a desire for maximum

reliability of the subarray modules. It should be noted that for this application, space was not a

constraint so the cooling structure was made intentionally large. If needed, this structure size

could be significantly reduced to accommodate flush mounting applications for the use of tile

subarrays.
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Figure 6-2. Mechanical Layout of the 32 Element Array Assembly
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Figure 6-3. Side View of the 32 Element Array Assembly

Figure 6-4. Front View of the 32 Element Array Assembly
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The junction box contains two DC to DC power supplies for conversion of the 28 VDC

unregulated supply to +10 and -10 drive voltage, a voltage controller for the thermoelectric

cooling devices, and the appropriate routing for interfacing the controller to the array assembly.

The array assembly envelope is approximately 6 x 6 x 7 inches while the junction box envelope is

approximately 6 x 7 x 4 inches. The same 486 PC controller used for the subarray modules was

used as the controller for the array assembly.

The individual subarray module designed for a laboratory operating environment required five

different regulated DC power supplies (Vcc , Vdrain, Vgate, Vphas e (+), and Vphas e (_)) to

operate. As multiple power supplied were not desirable for the flyable array, DC regulation was

provided occurring in two stages. The junction box which contained DC to DC power supplies

provided the initial stage and fed +10 and -10 VDC to the array via one of the interface

connectors. Additional regulation and conversion to the required operating voltages was

accomplished in the array assembly via use of appropriate circuits. An additional circuit built into

the array assembly provided an automatic power up sequence by applying the bias circuits in a

specific order to prevent unintentional damage to the amplifiers and ASIC. This provision

enabled the power up sequence (from a users point of view) to be completed with the flip of a
single switch.

A critical feature of the array assembly is that RF drive power for the two individual subarray

modules is provided by an integral drive power amplifier subassembly. The driver amplifier

requires a minimum input of -5 dBm at a single connector and provides approximately 22 dBm at

each of the two output connectors. DC regulation and turn on sequence is integrated into the

subassembly.

6.1 32 Element Array Thermal analysis

The baseline packaging approach was driven by the desire to provide a large design margin

specifically in the areas of thermal management and DC power regulation. It has been well

established that GaAs MMICs provide exceptional reliability under high levels of thermal stress at

frequencies commonly used for radar applications. Extended periods of time with MMIC junction

temperatures of 130°C are considered normal operating parameters for MMICs in wide use

today. However, as the amount of readily available reliability data proving similar attributes of

the high frequency P-HEMTs used is limited, the choice to provide significant thermal design

margin was made. To maintain the array mechanical structure at a reasonable size, thermoelectric

cooling coupled with forced air was used as the baseline approach. Thermal analysis of the

structure using measured power consumption of the individual subarrays and the integrated DC

regulation, logic distribution circuits determined the actual size of the delivered array package.

The objective of the thermal management approach and array packaging was to maintain the

subarray module face at approximately 25-30°C which would translate into amplifier MMIC

junction temperatures in the 80-100°C range. To provide the requisite cooling, three individual

thermoelectric devices with a combined heat transfer load of 45 W are attached thermally to the

backside of the subarray modules. Heat transferred from the TEC devices is conducted to a

finned heat sink cooled by forced air. Experience gained during the testing of the array indicated
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that with the TEC devices driven to approximately 50 percent of capacity, the stable temperature

of the array remained in the 25-30°C range even when operated continuously for 3-4 hours under

ambient atmospheric conditions. Relative temperature of each subarray is monitored via an IC

physically attached to each subarray module with the output routed to connections on the junction

box. The IC's provide a current output proportional to the temperature of the subarray in degrees

Kelvin. This capability was used to monitor changes in temperature during operation on a real
time basis.

6.2 32 Element Array Performance

Test and characterization of the 32 element array assembly was accomplished in the same

manner as the individual subarray modules. The array controller was modified to handle 32

elements instead of 16 and was used in conjunction with the automated range set up to generate

phase state tables for the proper control and pointing of the array. E and H plane patterns were

measured both in the typical azimuth/phi scans as well as multiple off axis pointing vectors needed

for the planned series of airborne and land mobile tests. Figure 6-5 shows the E-plane boresight

pattern and Figure 6-6 shows the H-plane boresight pattern. Figure 6-7 shows a series of E-plane

patterns to demonstrate the scan performance out to 50 degrees scan. Small steering angle

measurements taken during the range testing showed the steering accuracy of the array to be

approximately 2 degrees. Measured EIRP of the 32 element array was in excess of 300 watts.

0.00
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SCAN DATE: 7--DEC--93 TIME: 16:21

29.6340 PLOT DATE: 7--DEC--g3 TIME: 16:23
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Figure 6-5. E-Plane Boresight Pattern
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7. Summary and Next Steps

The original objective of this program was to demonstrate in a laboratory environment, the

insertion of MMIC device technology into an application supporting advanced communication

satellite antenna systems. This objective was clearly met with the first demonstration of a single

subarray module. This subarray module showed the technical viability of a true file phased array

architecture while overcoming a number of technical roadblocks related to the efficient integration

and control of millimeter wave phased array building blocks. However, the success did not end

with attainment of the primary objective. As the objectives of the program evolved over time to

require a higher level of integration for support of the AERO-X and land mobile experiments, the

resultant successes of the program went well beyond the original scope. In addition to proving

the viability of the file phased array architecture, this effort produced a sub-system capable of

practical use and demonstration in a real world application.

For the potential represented by the achievement of the Ka-Mist Subarray Module to be

realized, the work begun on this program must be continued with the goal of simplifying the

construction and the cost of the array. Significant applications both military and commercial will

be realized when the file array technology moves out of the technology development arena and

into a product development arena. This will happen when the using community perceives that the

technology can be made affordable. Specific areas to be worked in the future include use of

monolithic approaches to the MMIC insertion, soft substrates for lower fabrication costs, and

elimination of the conventional wirebonding interconnection techniques through the use of

mutilayer vertical interconnect technology.
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